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Abstract. Recently, new connection formulas for the WKB method have been proposed, without justifica-
tion, for quantum tunneling problems. We show that these formulas can be associated with diagrammatic
rules within the complex time framework of the path integral formalism and then we express the relevant
Green functions in terms of a sum of contributions coming from (easily interpreted) classical paths. The
method is applied to barrier penetration and the double well.

1 Introduction

Approximation methods are a necessary industry in
physics because exactly soluble problems are few and gen-
erally unrealistic. In this respect, it is a very satisfying
consolation that one of the oldest approximation schemes
in quantum theory, the WKB method, continues to find
applications in the broad front of present-day research
[1]. The method, however, is plagued with a chronic diffi-
culty: it breaks down when the local particle momentum
p = �k =

√
2m[E − V (x)] is small, and is completely

inapplicable when p = 0 [2]. The well-known way to cir-
cumvent this problem is to connect the approximate wave
functions across regions where the method fails: a simple
way to implement this is to replace the actual potential
V (x) by a linear one at the neighborhood of the classi-
cal turning points [3]. In virtue of this simple remedy the
WKB method has indeed been an effective tool in dealing
with wave-propagation problems.

Effective as the conventional WKB method maybe, the
resulting connection formulas, that relate the wave func-
tions across turning points, do not allow freedom for the
possibility of wave function suppression on the classical
forbidden zone(s) and they constrain the reflection phase
to a single value for all energies. In very recent develop-
ments, the method has been relieved of these shackles by
the introduction of new connection formulas that leave the
amplitude and phase unspecified to some extent [4]. Con-
sistency is then built into the new formulas by imposing
continuity across the turning points. As offshoots of these
developments, certain tunneling and potential reflection
problems, previously inaccessible or only unsatisfactorily
solved by the conventional theory, have now been suc-
cessfully addressed [4, 5]. One sees hope in being able to
handle the case when p is consistently small.

From another direction it has been shown that the
WKB results can be derived by a semi-classical approx-
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imation of the path integral [6]. This led to the cross-
fertilization of the two approaches culminating in a dia-
grammatic reformulation of the complex-time path inte-
gral formalism for tunneling which is equivalent to the
conventional WKB theory [7]. Since, as is well known,
path-integral methods lend themselves readily to gener-
alization into field theory and carry considerable physical
insight into the entire spectrum of quantum systems, these
results are interesting in their own right [8]. The path in-
tegral within the semi-classical approximation has in fact
received further boost from recent mathematical develop-
ments [9].

The issue we seek to address here is a generalization
of the complex-time formalism to encompass the general-
ized WKB connection formulas mentioned above. It is only
to be expected that the boon now being enjoyed by the
WKB method should also be a boon for the semi- clas-
sical path integral approach. Also we may observe that
the above-mentioned connection formulas had not been
derived; they were simply postulated based on the old
conventional form. Although we are unable to provide a
first-principles derivation of these formulas, we indicate
where the new elements might be from. We also obtain a
new diagrammatic rendition of the Green function which
can be interpreted in terms of rules for propagation fac-
tors, and phases and weights at the turning points. These
are consistent with the new connection formulas. Many ef-
forts toward improving the WKB method have been made
recently, such as the semiclassically modified Born approx-
imation [10], but we will focus attention on those of refer-
ences 4 and 5.

The rest of the paper is structured as follows. In Sect. 2
we review the semi-classical path integral approach and
show how the new connection formulas emerge. These for-
mulas give rise to diagrammatic rules that we apply to the
Green function in Sect. 3. There we show that the Green
functions can be interpreted as sums over complex time
classical paths consistent with the new connection formu-
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las. Two applications follow in Sect. 4, that demonstrate
the directness of the method. A new formula for the life-
time in a double well is obtained. Finally, in Sect. 5 we
conclude by indicating directions for future work

2 New connection formulas

Let us begin by deriving the new connection formulas
within the context of the semi-classical limit of the Green
function G(xf , xi, E) for propagation of a particle of mass
m, and energy E through a potential V (x) from a point
xi to xf [6, 11]:

G(xf , xi, E) =
1
�

∑∑
xcl

[
eiπẋcl(0)ẋcl(Ts)

]−1/2

×eiWcl(Ts) , (1)

where the particle is understood to follow a classical path
xcl(t), Ts is the time of transit, ẋcl(t) is the velocity at
time t and Scl = S[xcl] =

∫ Ts

0 dt[ 12mẋ
2 − V (x)] is the

action evaluated along the classical path. Note that

Wcl(Ts) = [Scl(Ts) + Ecl(Ts)]/� . (2)

The classical energy is given by

Ecl = −∂Scl

∂T
. (3)

The sum in (1) is over all classical paths xcl connecting
the end points and over times compatible with these paths.
Because Ecl is the sum of kinetic and potential energies

Wcl(Ts) =
1
�

Ts∫
0

dxcl(t)pcl(t) , (4)

so that Wcl is the usual WKB phase.
Following Carlitz and Nicole [6], we study the propa-

gation of the particle in a linear one-dimensional potential

V (x) = −λx , (5)

for which the classical path connecting xi and xf in a time
T is

xcl(t) = xi +
xf − xi

T
t− λT

2m
t+

λ

2m
t2 , (6)

with the corresponding action

Scl =
m

2T
(xf − xi)2 +

λT

2
(xf + xi) − λ

2T 3

24m
. (7)

It is convenient to set E = 0 so (3) gives the times

Ts =

√
2m
λ

(
x

1/2
f + x1/2

i

)
, (8)

Fig. 1a–c. Linear potential for a particle of mass m, energy
E = 0, with initial and final points xi and xf in a the allowed
region, b in the forbidden and allowed regions, respectively,
and c in the forbidden region

where all possible signs of the square roots of the x’s are
permissible. Then the corresponding action may be eval-
uated, yielding

Scl =
2
3
(2mλ)1/2

[
x

3/2
f + x3/2

i

]
= �Wcl , (9)

and evaluation of (1) gives the Green function

G(xf , xi, E) = −
∑ eiπ/4

�

[
e−iπ/2m

2λx1/2
i x

1/2
f

]1/2

× exp
[
i

�

2
3
(2mλ)1/2

(
x

3/2
f + x3/2

i

)]
, (10)

where the sum is over the relevant signs of the roots of the
x’s, as dictated by (8).

We need to study three possible propagation events
as depicted in Fig. 1. In Fig. 1a the particle remains in the
allowed region all the time and goes from xi to xf through
two paths: one is direct and the other involves a reflection
at the origin while in transit. These yield two times

T (1a)
s =

(
2m
λ

)1/2 (
x

1/2
f ± x1/2

i

)
. (11)

The Green function is

G(1a)(xf , xi, E = 0)

= −e
iπ/4

�

[
e−iπ/2m

−2λx1/2
i x

1/2
f

]1/2

× exp
[

2i
3�

(2mλ)1/2
(
x

3/2
f − x3/2

i

)]

−e
iπ/4

�

[
e−i(π/2+α)m

2λx1/2
i x

1/2
f

]1/2

× exp
[

2i
3�

(2mλ)1/2
(
x

3/2
f + x3/2

i

)]

= −2
�

[
m

2λ(xixf )1/2

]1/2

exp
[

2i
3�

(2mλ)1/2x
3/2
f

]
×ei(π/4−α/2)

× cos
[

2
3�

(2mλ)1/2x
3/2
i − π

4
− α

2

]
. (12)
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Here all the x1/2
f , x3/2

i , etc take the positive sign. Also
in the second line, an arbitrary reflection phase of - α is
appended in light of the discussion in Sect. 1.

In Fig. 1b the particle lies initially at the classically
forbidden zone and propagates into the allowed zone. Only
one path contributes to G, namely the one whose time of
transit is

T (1b)
s =

(
2m
λ

)1/2 (
x

1/2
f − i(−xi)1/2

)
. (13)

As we had noted in Sect. 1, the new WKB approach mod-
ifies the connection formulas by introducing suitably gen-
eralized phases and amplitudes. In this spirit, we assume
that a phase of - α/2 accrues as the particle crosses the
origin and that a real factor of N acts to control the final
amplitude. That is, we expect the phase to be half that
for a reflection in Fig. 1a. Then the Green function for this
case is

G(1b)(xf , xi, E = 0)

= −1
�

(
m

2λ(−xixf )1/2

)1/2

× exp
[

2i
3�

(2mλ)1/2x
3/2
f

]
Nei(π/4−α/2)

× exp
[
− 2

3�
(2mλ)1/2(−xi)3/2

]
. (14)

Finally in Fig. 1c the particle starts and ends in the forbid-
den zone. A direct path contributes together with a path
reflecting at the origin. Both evolve in purely imaginary
time. As in Fig. 1b, we append an arbitrary amplitude
factor of N/2N̄ together with an arbitrary phase factor
of e−i(α−ᾱ)/2 for reflection inside the forbidden zone. The
N̄ , ᾱ are arbitrary. Thus, we find

G(1c)(xf , xi, E = 0)

= −1
�

[
m

2λ(xfxi)1/2

]1/2

exp
[
− 2

3�
(2mλ)1/2(−xi)3/2

]

×
{

exp
[

2
3�

(2mλ)1/2(−xf )3/2
]

− eiπ/2 N

2N̄
e−i(α−ᾱ)/2

× exp
[
− 2

3�
(2mλ)1/2(−xf )3/2

]}
. (15)

The WKB phase is

W (x) =
1
�

∫ x

0
p(x′)dx′ =

2
3�

(2mλ)1/2x3/2 . (16)

We can extract the connection formulas by comparing
pairs of formulas. It is convenient to define new phase
angles as follows φ = π/2 + α, φ̄ = 3π/2 + ᾱ. Comparing
(12) and (14) we obtain

1√|p(x)|

(
exp

[
−i
∣∣∣∣1�
∫ x

0
p(x′)dx′

∣∣∣∣
]

+e−iφ exp
[
i

∣∣∣∣1�
∫ x

0
p(x′)dx′

∣∣∣∣
])

Table 1. Phase and weight factors at each turning point

Phase Weight

Allowed → allowed e−iφ 1
Forbidden → forbidden −e−i(φ−φ̄)/2 N/2N̄
Forbidden → allowed ie−iφ/2 N

Allowed → forbidden e−iφ/2 N

→ N√|p(x)|e
−iφ/2 exp

[
−
∣∣∣∣1�
∫ 0

x

p(x′)dx′
∣∣∣∣
]
, (17)

where x ≥ 0 on the left-hand expression while x ≤ 0 on
the right-hand expression. Similarly, (14) and (15) yield

1√|p(x)|

(
exp

[∣∣∣∣
∫ x

0
p(x′)dx′

∣∣∣∣
]

− N

2N̄
e−i(φ−φ̄)/2

× exp
[
−
∣∣∣∣
∫ x

0
p(x′)dx′

∣∣∣∣
])

→ iN√|p(x)|e
−iφ/2 exp

[
i

∣∣∣∣
∫ 0

x

p(x′)dx′
∣∣∣∣
]
, (18)

On the left-hand side x ≤ 0 while on the right x ≥ 0. Equa-
tion (17) tells us that a particle incident from the allowed
region is reflected with a phase - φ and unchanged ampli-
tude and transmitted with a phase - φ/2 and transmitted
with a phase new amplitude of N . Equation (18) asserts
that a particle incident from the forbidden zone undergoes
reflection with a phase −e−i(φ−φ̄)/2 and an amplitude of
N/2N̄ and is transmitted with amplitude N and a phase
of ie−iφ/2. These results are gathered together in Table 1.
Because a shift in energy is equivalent to a translation in
x for a linear potential, these results hold for any value of
E. In the older literature, N = N̄ = 1 and φ = −φ̄ = π/2.
For expressions for these in the new approach, we refer to
references 4 and 5. We will not derive them here.

We may now establish contact with the generalized
connection formulas in the literature [4]. From (17) we
have

2√|p(x)| cos
([∣∣∣∣

∫ x

0
p(x′)dx′

∣∣∣∣
]

− 1
2
φ

)

→ N√|p(x)| exp
[
−
∣∣∣∣
∫ x

0
p(x′)dx′

∣∣∣∣
]
, (19)

which is one of the connection formulas. Next we rewrite
(18) in the form

1√|p(x) |

(
exp

[∣∣∣∣
∫ x

0
p(x′)dx′

∣∣∣∣
]

− N

2N̄
e−i(φ−φ̄)/2

× exp
[
−
∣∣∣∣
∫ x

0
p(x′)dx′

∣∣∣∣
])

→ 2
iN√|p(x)|e

−iφ/2

×
{

e−iφ̄/2

e−iφ − e−iφ̄
cos
[∣∣∣∣
∫ 0

x

p(x′)dx′
∣∣∣∣− 1

2
φ̄

]

− e−iφ/2

e−iφ − e−iφ̄
cos
[∣∣∣∣
∫ 0

x

p(x′)dx′
∣∣∣∣− 1

2
φ

]}
. (20)
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Fig. 2. A potential V (x) with n wells. The turning points are
denoted by ai, bi (i = 1, 2, . . . , n)

It is clear that (19) connects the last terms of both sides of
(20) provided that − N

2N̄
e−i(φ−φ̄)/2 = i N2e−iφ

e−iφ−e−iφ̄ or simply

NN̄ = sin
1
2
(φ− φ̄) . (21)

This is the continuity condition of ref. [5]. Now the first
terms of both sides of (20) ‘connect’ provided

1√|p(x)| exp



∣∣∣∣∣∣

x∫
0

p(x′)dx′

∣∣∣∣∣∣



→ 1√|p(x)|
1
N̄

cos



∣∣∣∣∣∣

0∫
x

p(x′)dx′

∣∣∣∣∣∣−
1
2
φ̄


 , (22)

which is the second generalized connection formula. We
had invoked (21) in writing (22). Formulas (19) and (22)
are, in fact, the new generalized connection formulas [4].

3 Diagrammatic representation
of the Green function

We now derive a diagrammatic representation for the
Green function employing the rules of Table 1. In the
case that the energy spectrum is discrete, the retarded
Green function can be written as a sum over eigenfunc-
tions, namely,

G(xf , xi, E) =
∑

k

Ψk(xf )Ψ+
k (xi)

E − Ek
, (23)

where we assume implicitly that E has a tiny imaginary
part so the poles are in the lower half of the energy plane.
Following Aoyama and Harano [7], we replace the wave
functions by their WKB forms.

To fix our discussion, consider the propagation of a
particle of mass m from xi in region II to xf in region I as
shown in Fig. 2. The points a1 and bn denote the turning
points nearest to these initial and final points. The WKB
wave functions can be cast as

1√|p|


AE exp


i

a1∫
x

p(x′)dx′




+BE exp


−i

a1∫
x

p(x′)dx′




 , x ∈ I,

1√|p|


CE exp


−i

x∫
bn

p(x′)dx′




+DE exp


i

x∫
bn

p(x′)dx′




 , x ∈ II, (24)

with the coefficients related by a 2 × 2 matrix S(E) de-
termined by the potential and the energy [12]:(

AE

BE

)
= S(E)

(
CE

DE

)
. (25)

It will be useful to have an explicit form for the matrix
S̃(E) connecting region II to the region (bn−1, an) [this
differs from S(E) of (25) which connects regions I and II].
Toward this end, we start with the wave function in II (we
omit the factor |p|1/2, for convenience),

ΨII(x)=C exp


 x∫

bn

K(x′)dx′


+D exp


−

x∫
bn

K(x′)dx′


 ,

K =

√
2m
�2 (V − E) . (26)

By the connection formulas (19) and (22) we can write
the wave function in the region (an, bn) adjacent to II:

Ψ(an,bn)(x)

=
C

N̄


− sin(Wn − 1

2

(
φ− φ̄)

sin 1
2

(
φ− φ̄) cos


 x∫

an

p(x′)dx′ − 1
2
φ̄




+
sin
(
Wn − φ̄)

sin 1
2

(
φ− φ̄) cos


 x∫

an

p(x′)dx′ − 1
2
φ






+
2D
N


 sin(Wn − 1

2 (φ+ φ̄)
sin 1

2 (φ− φ̄) cos


 x∫

an

p(x′)dx′ − 1
2φ




+
sin(Wn − φ)
sin 1

2 (φ− φ̄) cos


 x∫

an

p(x′)dx′ − 1
2 φ̄




 (27)

whereWn =
∫ bn

an
p(x′)dx′. A second application of the con-

nection formulas now yields the wave function in the next
adjacent zone, Ψ(bn−1,an)(x), from which we can extract
the required matrix

S̃(E) =




N
2N̄

sin(Wn−φ̄)

sin 1
2 (φ−φ̄)

e−∆n−1 sin(Wn− 1
2 (φ+φ̄)

sin 1
2 (φ−φ̄)

e−∆n−1

− sin(Wn− 1
2 (φ+φ̄)

sin 1
2 (φ−φ̄)

e∆n−1 − 2N̄
N

sin(Wn−φ)

sin 1
2 (φ−φ̄)

e∆n−1




(28)
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Fig. 3. Diagrammatic representation of iRn (35). Physically
the particle undergoes reflection at bn (top diagram, right) and
oscillates in the region (an, bn) [remaining diagrams]

where ∆n−1 =
∫ an

bn−1
|p(x′)dx′|.

Aoyama and Harano [7] have calculated (23) for the
retarded Green function for propagation from xi to xf

where both points are in the forbidden zone in II and
xi > xf . Their result is

GR
(
xII

i , x
II
f , E

)
= − |p(xi)p(xf )|−1/2

e−∆i
(
e∆f + iRne

−∆f
)
, (29)

where the reflection coefficient has been defined by

Rn = i
S

(n)
21

S
(n)
22

, (30)

and ∆i,f =
∫ xi,f

bn
|p(x′)dx′|. The superscript n reminds us

that there are n wells in the potential. If xi and xf lie on
opposite sides of the wells, then, their result is

GR(xII
i , x

I
f , E) = − |p(xi)p(xf )|−1/2

Tne
−∆ie−∆′

f , (31)

where ∆′
f =

∫ xi

xf
|p(x′)dx′| and the transmission coefficient

has been introduced,

Tn =
1

S
(n)
22

. (32)

In the above, the matrix S(n) connects regions I and II
and it can be written as a product of the matrix S(n−1)

which connects region I to the region (bn−1, an) and the
matrix S̃(E) which links the region (bn−1, an) with region
II.

We calculate the reflection coefficient Rn and the tran-
sition amplitude Tn and show that their diagrammatic
representations consistent with Table 1 can be drawn. The
importance of diagrams has been noted by Carlitz and
Nicole and by Millard [6]: through them we have a physi-
cal criterion with which to study the dominant scattering
mechanism and to adequately strengthen the weakness in-
herent in the stationary phase approximation. We start
with the reflection coefficient defined by (30):

Rn = i

{
S

(n−1)
21

N
2N̄

sin
(
Wn − φ̄) e−∆n−1 − S(n−1)

22

Fig. 4. Diagrammatic representation of e−iφR̃n (36). Physi-
cally, the particle reflects at an and also undergoes tunneling
reflections in the region (bn−1, an)

× sin
[
Wn − 1

2

(
φ+ φ̄

)]
e∆n−1

}/{
S

(n−1)
21

× sin
(
Wn − 1

2 (φ+ φ̄)
)
e−∆n−1 − S(n−1)

22
2N̄
N

× sin [Wn − φ] e∆n−1

}

= i
N

2N̄
e−i(φ−φ̄)/2 1 − R̃ne

2iWne−i(φ+φ̄)

1 − R̃ne2iWne−2iφ
, (33)

where

R̃n =
1 − N

2iN̄
ei(φ−φ̄)Rn−1e

−2∆n−1

1 − N
2iN̄
e−i(φ−φ̄)Rn−1e−2∆n−1

. (34)

If we now expand (33) in the form

iRn = − N

2N̄
e−i(φ−φ̄)/2e−i(φ−φ̄)/2

+
(
e−iφR̃n

)
e2iWn

(
iN2e−iφ

)
+
(
e−iφR̃n

)2
e4iWn

(
iN2e−iφ

)
e−iφ + ... (35)

we obtain immediately the diagrammatic representation
given in Fig. 3. The first at the top (right diagram) corre-
sponds to a direct reflection at the turning point bn. The
other paths have oscillations in the nth well; e−iφR̃n con-
tains information on the region left of an. Similarly for
(35):

e−iφR̃n = e−iφ + ie−iφN2(iRn−1)e−2∆n−1 − N

2N̄
×e−i(φ−φ̄)/2ie−iφN2(iRn−1)e−4∆n−1 + .... (36)

which is shown in Fig. 4. As with the case of Fig. 3, each
diagram corresponds to a group of paths that oscillate in
the forbidden zone (bn−1, an). The explicit case of iR1 is

iR1 = − N

2N̄
e−i(φ−φ̄)/2 +

(
iN2e−iφ

)
e−iφe2iWn

+
(
iN2e−iφ

)
(e−iφ)3e4iWn + ... (37)

which is easily rendered in diagrammatic form and is omit-
ted.
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Fig. 5a,b. Interpretation of the factors in (39) in terms of
classical paths involving passage through a the nth well and b
tunneling within the (n − 1)st barrier

Let us next look at the transmission coefficient:

Tn = iN2e−iφ e−∆n−1

1 − N
2iN̄
Rn−1e−2∆n−1e−i(φ−φ̄)/2

· eiWn

1 − R̃ne2iWne−2iφ
Tn−1, (38)

∆n−1 =
an∫

bn−1

|p(x′)| dx′, whose factors can be rendered

diagrammatically as shown in Fig.5a and b, respectively:

eiWn

1 − R̃ne2i(Wn−φ)

= eiWn + R̃ne
−2iφe3iWn + (R̃ne

−2iφ)2e5iWn + ...,
e−∆n−1

1 − N
2iN̄
Rn−1e−2∆n−1e−i(φ−φ̄)/2

= e−∆n−1 +
N

2iN̄
Rn−1e

−3∆n−1e−i(φ−φ̄)/2

+
(
N

2iN̄

)2

R2
n−1e

−5∆n−1e−i(φ−φ̄) + ... (39)

The first factor above involves oscillations in the allowed
region (an, bn) while the second tunneling back and forth
in the forbidden zone (bn−1, an). We also have an expan-
sion for T1:

T1 = iN2e−iφeiW
[
1 + e−2iφe2iW + e−4iφe4iW + ....

]
(40)

As the diagrams show, both Rn and Tn can be given dia-
grammatically in terms of classical paths.

4 Applications

We give two examples of the use of the above methods.
To distinguish the phases and weights at the left and right
turning points we append the subscripts l and r.

For the transmission of a particle through a potential
barrier V (x) with two classical turning points xl and xr

with V (x) approaching constant values as x → ±∞, we

Fig. 6. Tunneling across a potential barrier interpreted as a
sum of complex-time paths inside the barrier

Fig. 7. Particle with energy E in a double well potential with
turning points labeled ± L and ±. R

have the diagrams given in Fig. 6. From Table 1 the corre-
sponding expression for the transmission amplitude is the
geometric series

T = e−iφl/2Nle
−∆ie−iφr/2Nr +Nle

−iφl/2e−∆

×
(
Nr

2N̄r

)(
−e−i(φr−φ̄r)

)
e−∆

(
Nl

2N̄l

)(
−e−i(φl−φ̄l)

)
×e−∆ie−iφr/2Nr + ...

=
iNlNr

e∆ei(φl+φr)/2 − Nl

N̄l

Nr

N̄r

1
4∆e

i(φ̄l+φ̄r)
. (41)

Here ∆ =
xr∫
xl

|p(x′)| dx′. This is exactly the result of

Eltschka et al. [3], which they derived via the classical
WKB way (using the generalized connection formulas).

Let us now take the symmetrical double well of Fig. 7.
There are four turning points. We assume that at each of
these N = N̄ and φ = −φ̄ so that NN̄ = N2 = sinφ.
Using (38) and with n = 2, we obtain

T2 = iNRNLe
−iφR/2e−iφL/2 · e−∆

1 − 1
2iR1e−2∆eiφL

· eiW1

1 − R̃2e2iW1e−i(φL+φR)
T1 , (42)
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where

iR1 = −1
2

sin
[ 1
2 (φL − φR) −W1

]
sin
[ 1
2 (φL + φR) −W1

] ,
R̃2 =

1 − 1
2ie

iφLR1e
−2∆

1 − 1
2ie

−iφLR1e−2∆
,

T1 =
NRNL

2 sin
[ 1
2 (φL + φR) −W1

] , (43)

in which ∆ =
∫ L

−L
|p(x′)| dx′, and W1 =

∫ R

L
|p(x′)| dx′.

The energy splitting can be computed:

∆E ∼= 1
τ

e−∆ (sinφL sinφR)1/2

1 − 1
8e

−2∆ cos(φL + φR)
, (44)

where τ =
R∫
L

dx
√

2m
(E−V ) is the classical period. This is to

be compared with Park et al’s [5] result. Their result must
be in error because when φL+φR is a multiple of 2π theirs
gives a lifetime that is proportional to e+∆.

5 Outlook

We have shown how the generalized connection formulas
for tunneling through a potential barrier can be obtained
from a semi-classical approximation of the path integral.
We also showed that a diagrammatic representation of the
Green function in terms of contributions from classical
paths is possible. The applications to barrier penetration
and the double well in Sect. 4 give an indication of the util-
ity and directness of the method. Where can we go from
here? As we had noted in the introduction, the method
generalizes the WKB approximation to situations in which
the momentum is small. There are a number of interesting
situations at present where this is important, for instance
ref. [13]. Applications to field theory may also be carried
out, as for instance, the study of properties of instantons
when they are not infinitely far apart (that is, questions
relating to the validity of the ‘dilute gas approximation’
[8, 14]).
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